## Department of Mathematics

## Spring 2016

GRADUATE COURSE SPRING 2016 - (01/19/16-05/16/16)
SENIOR UNDERGRADUATE COURSES

| Course | Sec \# | Course Title | Course Day \& TimeRm \# | Instructor |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Math 4309 | 16653 | Mathematical Biology | MWF, 10-11 a.m. | SEC 201 Z. Kilpatrick |  |
| Math 4332/6313 | $12556 / 14457$ | Introduction to Real Analysis | TuTh, 2:30-4 p.m. | F154 | B. Bodmann |
| Math 4335 | 20432 | Partial Differential Equations | TuTh, 4-5:30 p.m. | AH 301 | Y. Gorb |
| Math 4364 | 22165 | Numerical Analysis in Scientific ComputingMW, 4-5:30 p.m. | SEC 203 T. Pan |  |  |
| Math 4365 | 18961 | Numerical Differential Equations | MW, 1-2:30 p.m. | TBA | R. Hoppe |
| Math 4377/6308 | $15306 / 14458$ | Advanced Linear Algebra I | TuTh, 10-11:30 a.m. | SEC 201 A. Torok |  |
| Math 4377/6308 $20437 / 20438$ | Advanced Linear Algebra I (online) | Online | Online | J. Morgan |  |
| Math 4378/6309 | $12557 / 14459$ | Advanced Linear Algebra II | TuTh, 11:30-1 p.m. | F 154 | D. Wagner |
| Math 4380 | 12558 | A Mathematical Introduction to | Options | MW, 1-2:30 p.m. | CBB 214 I. Timofeyev |
| Math 4389 | 12559 | Survey of Undergraduate Mathematics | Online | Online | M. Almus |
| Math 4397 | 22166 | Numerical Linear Algebra | MW, 1-2:30 p.m. | SW 102 | Y. Kuznetsov |

GRADUATE ONLINE COURSES

| Course | Section Course Title | Course Day \& Time | Instructor |
| :--- | :--- | :--- | :--- |
| Math 533014251 | Abstract Algebra | Arrange (online course) K. Kaiser |  |
| Math 533212585 | Differential Equations | Arrange (online course) | G. Etgen |
| Math 533318436 | Analysis | Arrange (online course) | S. Ji |
| Math 538616176 | Regression and Linear ModelsArrange (online course) | C. Peters |  |

GRADUATE COURSES

| Course | SectionCourse Title | Course Day \& Time | Rm \# | Instructor |
| :--- | :--- | :--- | :--- | :--- |
| Math 630312592 | Modern Algebra II | MW, 1-2:30 p.m. | MH 138 | G. Heier |
| Math 630422169 | Theory of Matrices | TuTh, 10-11:30 a.m. | MH 113 | B. Bodmann |
| Math 630814458 | Advanced Linear Algebra I | TuTh, 10-11:30 a.m. | SEC 201 | A. Torok |
| Math 630820438 | Advanced Linear Algebra I (online) | Online | Online | J. Morgan |
| Math 630914459 | Advanced Linear Algebra II | TuTh, 11:30-1 p.m. | F 154 | D. Wagner |
| Math 631314457 | Introduction to Real Analysis | TuTh, 2:30-4 p.m. | F 154 | B. Bodmann |
| Math 632112609 | Theory of Functions of a Real Variable | MWF, 10-11 a.m. | AH 9 | V. Climenhaga |


| Math 632322172 | Theory of Functions of a Complex Variable | MWF, 11 a.m.-12 p.m. | AH 301 | S. Ji |
| :---: | :---: | :---: | :---: | :---: |
| Math 632722174 | Partial Differential Equations | TuTh, 4-5:30 p.m. | AH 301 | M. Perepelitsa |
| Math 636114461 | Applicable Analysis | MW, 4-5:30 p.m. | C 108 | D. Onofrei |
| Math 636712610 | Optimization and Variational Methods | TuTh, 11:30 a.m.-1 p.m. | M 104 | J. He |
| Math 637112611 | Numerical Analysis | TuTh, 4-5:30 p.m. | C 113 | A. Quaini |
| Math 637819049 | Basic Scientific Computing | TuTh, 1-2:30 p.m. | CAM 105 | R. Sanders |
| Math 638312612 | Probability Models and Mathematical Statistics | TuTh, 10-11:30 a.m. | MH 120 | W. Fu |
| Math 638512613 | Continuous-Time Models in Finance | TuTh, 2:30-4 p.m. | M 104 | E. Kao |
| Math 639525733 | $\mathrm{C}^{*}$-Algebras Associated with Dynamical Systems | TuTh, 4-5:30 p.m. | AH 2 | M. Tomforde |
| Math 639722179 | Hyperbolic Conservation Laws and Numerical Solutions | TuTh, 2:30-4 p.m. | AH 7 | J. Qiu |
| Math 639722180 | Stochastic Processes | MW, 4-5:30 p.m. | AH 301 | I. Timofeyev |
| Math 639722187 | Research Directions in Dynamical Systems and Related Fields | TuTh, 1-2:30 p.m. | SW 423 | W. Ott |
| Math 639722190 | Data Mining and Machine Learning | TuTh, 8:30-10:00 a.m. | SEC 203 | R. Azencott |
| Math 735012672 | Geometry of Manifolds | MW, 5:30-7 p.m. | AH 301 | G. Heier |
| Math 739722195 | Financial and Energy Time Series Analysis | TuTh, 10:00-11:30 a.m. | SW 219 | E. Kao |

Course Details

## SENIOR UNDERGRADUATE COURSES

Math 4309 - Mathematical Biology

MATH 3331 and BIOL 3306 or consent of instructor.

Prerequisites:

Text(s):

Description:

## << back to top >>

Math 4332 - Introduction to Real Analysis II

## Prerequisites:

Text(s):

## Instructor's Prerequisite Notes:

Linear Algebra (MATH 2331) and Differential Equations (MATH 3321 or MATH 3331)

Mathematical Models in Biology by Leah Edelstein-Keshet (2005); ISBN-13:978-0898715545

Topics in mathematical biology, epidemiology, population models, models of genetics and evolution, network theory, pattern formation, and neuroscience. Students may not receive credit for both MATH 4309 and BIOL 4309.

## Additional Instructor's notes:

This course introduces and analyzes a variety of mathematical models of biological systems at the molecular, cellular, and population levels. Applications to enzyme kinetics, population dynamics, gene expression, epidemiology, and neuroscience will all be discussed. Studying these systems will require mathematical techniques for dynamical systems, stochastic processes, pattern formation, and matrix analysis.

Further development and applications of concepts from MATH 4331. Topics may vary depending

## << back to top >>

Prerequisites:
Text(s):

Description:

## << back to top >>

Prerequisites:

Text(s):

Description:

## Math 4364 - Numerical Analysis in Scientific Computing

MATH 3331 and COSC 1410 or equivalent or consent of instructor.

## Instructor's Prerequisite Notes:

1. MATH 2331, In depth knowledge of Math 3331 (Differential Equations) or Math 3321 (Engineering Mathematics)
2. Ability to do computer assignments in FORTRAN, C, Matlab, Pascal, Mathematica or Maple.

Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, Brooks-Cole Publishers, ISBN:9780538733519

This is an one semester course which introduces core areas of numerical analysis and scientific computing along with basic themes such as solving nonlinear equations, interpolation and splines fitting, curve fitting, numerical differentiation and integration, initial value problems of ordinary differential equations, direct methods for solving linear systems of equations, and finite-difference approximation to a two-points boundary value problem. This is an introductory course and will be a mix of mathematics and computing.

|  | Math $\mathbf{4 3 6 5}$ - Numerical Methods for Differential Equations |
| :--- | :--- |
| Prerequisites: | MATH 3331, or equivalent, and three additional hours of 3000-4000 level Mathematics. |
| Text(s): | TBA |$\quad$| Numerical differentiation and integration, multi-step and Runge-Kutta methods for ODEs, finite |
| :--- |
| difference and finite element methods for PDEs, iterative methods for linear algebraic systems and |
| eigenvalue computation. |

## << back to top >>

Prerequisites:

Text(s):

Description:

## << back to top >>

Prerequisites:
Text(s):

Description:

Prerequisites:
Text(s):
Description:
<< back to top >>
<< back to top >>

Prerequisites:
Text(s):

Description:
<< back to top >>
<< back to top >>

Prerequisites:

## Math 4377 - Advanced Linear Algebra I (Online)

MATH 2331 or equivalent, and six additional hours of 3000-4000 level Mathematics. Linear Algebra | Edition: 4; Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence; ISBN: 9780130084514
Linear systems of equations, matrices, determinants, vector spaces and linear transformations, eigenvalues and eigenvectors.

## Math 4378 - Advanced Linear Algebra II

MATH 4377
TBA
Similarity of matrices, diagonalization, Hermitian and positive definite matrices, normal matrices, and canonical forms, with applications..

## Math 4377 - Advanced Linear Algebra I

MATH 2331 or equivalent, and three additional hours of 3000-4000 level Mathematics. Linear Algebra | Edition: 4; Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence; ISBN: 9780130084514

Linear systems of equations, matrices, determinants, vector spaces and linear transformations, eigenvalues and eigenvectors.

Additional Notes: This is a proof-based course. It will cover Chapters 1-4 and the first two sections of Chapter 5. Topics include systems of linear equations, vector spaces and linear transformations (developed axiomatically), matrices, determinants, eigenvectors and diagonalization.

## Math 4380 - A Mathematical Introduction to Options

MATH 2433 and MATH 3338.
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation | Edition: 1; Desmond Higham; 9780521547574
Arbitrage-free pricing, stock price dynamics, call-put parity, Black-Scholes formula, hedging, pricing of European and American options.

## Math 4389 - Survey of Undergraduate Mathematics

MATH 3330, MATH 3331, MATH 3333, and three hours of 4000-level Mathematics.

# Math 4397 - Selected Topics in Mathematics (Numerical Linear Algebra) 

| Prerequisites: | MATH 3333, MATH 3334, or MATH 3330 and consent of instructor. |
| :--- | :--- |
| Text(s): | TBA |
| Description: | TBA |

## << back to top >>

## ONLINE GRADUATE COURSES

## << back to top >>

Prerequisites:

Text(s):

Description:
<< back to top>>

Prerequisites: Text(s):

Description:

## << back to top >>

Prerequisites:
Text(s):

## MATH 5330 - Abstract Algebra

 Graduate standing.Abstract Algebra, A First Course by Dan Saracino. Waveland Press, Inc. ISBN 0-88133-665-3 (You can use the first edition. The second edition contains additional chapters that cannot be covered in this course.)

Groups, rings and fields; algebra of polynomials, Euclidean rings and principal ideal domains. Does not apply toward the Master of Science in Mathematics or Applied Mathematics.

Other Notes: This course is meant for students who wish to pursue a Master of Arts in Mathematics (MAM). Please contact me in order to find out whether this course is suitable for you and/or your degree plan. Notice that this course cannot be used for MATH 3330, Abstract Algebra.

## MATH 5332 - Differential Equations

Graduate standing: MATH 5331 or consent of instructor. TBA

Linear and nonlinear systems of ordinary differential equations; existence, uniqueness and stability of solutions; initial value problems; higher dimensional systems; Laplace transforms. Theory and applications illustrated by computer assignments and projects. Applies toward the Master of Arts in Mathematics degree; does not apply toward the Master of Science in Mathematics or the Master of Science in Applied Mathematics degrees.

## MATH 5333 - Analysis

Graduate standing. Two semesters of calculus or consent of instructor. Analysis with an Introduction to Proof | Edition:5; Lay; ISBN: 9780321747471; Pearson

A survey of the concepts of limit, continuity, differentiation and integration for functions of one variable and functions of several variables; selected applications. Applies toward the Master of Arts in Mathematics degree; does not apply towards the Master of Science in Mathematics or the Master of Science in Applied Mathematics degrees.

Additional Notes: This course is an introduction to Analysis. It will cover limit, continuity, differentiation and integration for functions of one variable and functions of several variables, and some selected applications. More precisely, it will cover the textbook from the chapter 3 to the chapter 7 (skip the section 15 and the section 24).
Description:
On-line course is taught through Blackboard Learn, visit https://accessuh.uh.edu/login.php for information on obtaining ID and password.

Homework: Homework will be submitted through Blackboard Learn by pdf file. The deadline for each homework assignment can be found in Blackboard Learn. No late homework assignments accepted.

Exams: There are two exams. The mid-term exam, and the comprehensive final exam. The dates are to be dertermined

## << back to top >>

Prerequisites:
Text(s):

## MATH 5386-Regression and Linear Models

Graduate standing. Two semesters of calculus, one semester of linear algebra, and MATH 5385, or consent of instructor.
Introduction to Linear Regression Analysis | Edition:5; Montgomery, Peck, Vining; ISBN: 9780470542811; Wiley

Simple and multiple linear regression, linear models, inferences from the normal error model, regression diagnostics and robust regression, computing assignments with appropriate software. Applies toward Master of Arts in Mathematics degree; does not apply toward the Master of Science
Description: in Mathematics or the Master of Science in Applied Mathematics degrees.

Note: This course is VEE approved for the regression component only. Approval Code: 4458-11008. For more information on VEE approved courses, click here.

## << back to top >>

MATH 5397 - Applied Linear Algebra by Numerical Methods- Cancelled
Prerequisites: N/A
Text(s): N/A
Description: N/A

## << back to top >>

## GRADUATE COURSES

## << back to top >>

## MATH 6303 - Modern Algebra II

Prerequisites: Graduate standing: MATH 4378 or consent of instructor.

> Text(s):

Description:

## TBA

Topics from the theory of groups, rings, fields, and modules with special emphasis on universal constructions.
<< back to top >>
Prerequisites: $\quad$ Graduate standing: Consent of instructor

Text(s): TBA

Description: Emphasis on canonical forms and finite dimensional spectral theory.

## << back to top >>

MATH 6308:14458 - Advanced Linear Algebra I
Prerequisites:
Text(s):

Description:

## << back to top >>

MATH 6308:20438 - Advanced Linear Algebra I (online)
Prerequisites:
Text(s):

Description:
<< back to top >>
MATH 6309 - Advanced Linear Algebra II

Prerequisites:
Text(s):
Description:

## << back to top >>

Prerequisites:
Text(s):
Description:

Graduate standing: MATH 2331 or equivalent, and three additional hours of 3000-4000 level Mathematics.
Linear Algebra | Edition: 4; Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence; ISBN: 9780130084514

Transformations, eigenvalues and eigenvectors.
Additional Notes: This is a proof-based course. It will cover Chapters 1-4 and the first two sections of Chapter 5. Topics include systems of linear equations, vector spaces and linear transformations (developed axiomatically), matrices, determinants, eigenvectors and diagonalization.

## Prerequisites:

Instructor's Prerequisite Notes: MATH 6320

Primary (Required): Real Analysis: Modern Techniques and Their Applications, Gerald Folland (2nd edition); ISBN: 9780471317166

## Text(s):

Description:
<< back to top >>

Prerequisites:

Text(s):

Description:

## << back to top >>

Prerequisites:
Text(s):
Description:
<< back to top >>

Prerequisites:
Text(s):
Description:

Supplementary (Recommended): Real Analysis for Graduate Students, Richard F. Bass, (2nd edition); ISBN: 9781481869140

Lebesque measure and integration, differentiation of real functions, functions of bounded variation, absolute continuity, the classical Lp spaces, general measure theory, and elementary topics in functional analysis.

Instructor's Additional Notes: Math 6321 is the second course in a two-semester sequence intended to introduce the theory and techniques of modern analysis. The core of the course covers elements of functional analysis, Radon measures, elements of harmonic analysis, the Fourier transform, distribution theory, and Sobolev spaces. Additonal topics will be drawn from potential theory, ergodic theory, and the calculus of variations.

## MATH 6323 - Theory of Functions of a Complex Variable

Graduate standing. MATH 4331 or consent of instructor.
Instructor's Prerequisite Notes: Math 6322 or consent of instructor.
No textbook required. Lecture notes provided.
Geometry of the complex plane, mappings of the complex plane, integration, singularities, spaces of analytic functions, special function, analytic continuation, and Riemann surfaces. Additional
Notes: This course is an introduction to complex analysis. This two semester course will cover the theory of holomorphic functions, residue theorem, harmonic and subharmonic functions, Schwarz's lemma, Riemann mapping theorem, Casorati-Weterstrass theorem, infinite product, Weierstrass' (factorization) theorem, little and big Picard Theorems and compact Riemann surfaces theory.

## MATH 6327 - Partial Differential Equations

Graduate standing. MATH 4331 or consent of instructor.
TBA
Existence and uniqueness theory in partial differential equations; generalized solutions and convergence of approximate solutions to partial differential systems.

## MATH 6361 - Applicable Analysis

## Graduate standing. and consent of instructor

TBA
Solvability of finite dimensional, integral, differential, and operator equations, contraction mapping principle, theory of integration, Hilbert and Banach spaces, and calculus of variations.

## MATH 6367- Optimization and Variational Methods

Graduate standing: MATH 4331 and MATH 4377, or consent of instructor.
TBA
Constrained and unconstrained finite dimensional nonlinear programming, optimization and Euler-Lagrange equations, duality, and numerical methods. Optimization in Hilbert spaces and variational problems. Euler-Lagrange equations and theory of the second variation. Application to integral and differential equations.

## MATH 6371 - Numerical Analysis

Graduate standing and consent of instructor TBA
Ability to do computer assignments. Topics selected from numerical linear algebra, nonlinear equations and optimization, interpolation and approximation, numerical differentiation and integration, numerical solution of ordinary and partial differential equations.

## MATH 6378 - Basic Scientific Computing

Graduate standing. MATH 4364 and MATH 4365 or equivalent, and either COSC 1304 or COSC 2101 or equivalents, or consent of instructor.
TBA
A project-oriented course in fundamental techniques for high performance scientific computation. Hardware architecture and floating point performance, code design, data structures and storage techniques related to scientific computing, parallel programming techniques, applications to the numerical solution of problems such as algebraic systems, differential equations and optimization. Data visualization.

## MATH 6383 - Probability Models and Mathematical Statistics

Graduate standing. MATH 3334, MATH 3338 and MATH 4378, or consent of instructor.
Prerequisites:

Text(s):
Instructor's Prerequisites: Two years of Calculus, Math 6308 Advanced Linear Algebra I, Math 5386 Regression and Linear Models, andMath 6382 Probability and Statistics or equivalent.

Recommended Text: John A. Rice : Mathematical Statistics and Data Analysis, $3^{\text {rd }}$ editionBrooks / Cole, 2007. ISBN-13: 978-0-534-39942-9.

## Reference Texts:

-P. MuCullagh and J.A. Nelder: Generealized Linear Models, $2^{\text {nd }}$ ed. 1999 Chapman Hall/CRC
-Raymond H. Myers, Douglas C. Montgomery, G. Geoffrey Vining, Timothy J. Robinson, Generalized Linear Models: with Applications in Engineering and the Sciences, $2^{\text {nd }}$ ed. Wiley, 2010. ISBN: 978-0-470-45463-3.
<< back to top >>
<< back to top >>

Prerequisites:

Text(s):

Description:

A survey of probability theory, probability models, and statistical inference. Includes basic probability theory, stochastic processes, parametric and nonparametric methods of statistics.

Instructor's Description: This course is designed for graduate students who have been exposed to basic probability and statistics and would like to learn more advanced statistical theory and techniques in modelling data of various types, including continuous, binary, counts and others. The selected topics will include basic probability distributions, likelihood function and parameter estimation, hypothesis testing, regression models for continuous and categorical response variables, variable selection methods, model selection, large sample theory, shrinkage models, ANOVA and some recent advances.

## MATH 6385 - Continuous-Time Models in Finance

Graduate standing. MATH 6384 or consent of instructor.
"Arbitrage Theory in Continuous Time" (3rd Edition), Tomas Björk, Oxford University Press, 2009. ISBN: 9780199574742
"Stochastic Calculus for Finance II: Continuous-Time Models," Steven Shreve, Springer, 2004. ISBN: 9780387401010

Stochastic calculus, Brownian motion, change of measures, Martingale representation theorem, pricing financial derivatives whose underlying assets are equities, foreign exchanges, and fixed income securities, single-factor and multi-factor HJM models, and models involving jump diffusion and mean reversion.

## MATH 6395:25733 - C*-Algebras Associated with Dynamical Systems

Graduate standing and consent of instructor
No textbook. Course notes will be distributed.

We will discuss various classes of $C^{\star}$-algebras constructed from dynamical systems, and examine the interplay that exists between the analysis, algebra, and dynamics. The course will start with an introduction to symbolic dynamics and discrete dynamical systems, and afterward we will construct classes of $C^{\star}$-algebras (e.g., Cuntz-Krieger algebras, graph C*-algebras, crossed products by the integers) that are intimately related to the dynamical systems.

## MATH 6397:22179 - Hyperbolic Conservation Laws and Numerical Solutions

Graduate standing and consent of instructor.
Prerequisites:
Instructor's Prerequisite Notes: MATH 4360 or 6370 . Basic knowledge in numerical analysis and scientific computing.

Prerequisites:

Text(s):

Description:

## << back to top >>

<< back to top >>

Prerequisites:

The first part of the course is to introduce mathematical theory for hyperbolic conservation laws that arise in many applications such as traffic flow, gas dynamics and fluid dynamics. The second part of the course is on advanced numerical methods for solving hyperbolic equations.

## MATH 6397:22180 - Stochastic Processes

Graduate standing.and consent of instructor
Recommended:
-Handbook of Stochastic Methods: For Physics, Chemistry and Natural Sciences, C.W. Gardiner
-Interacting Particle Systems (Classics in Mathematics), Thomas M. Liggett
-Multiscale Methods: Averaging and Homogenization (Texts in Applied Mathematics), G.A. Pavliotis \& Andrew Stuart

This course will cover a wide range of topics in stochastic processesand applied probability. Main emphasis will be on applied topics incontinuous-time stochastic processes and stochastic differential equations (SDEs).The following topics will be covered - continuous time Markov chains, averaging of fastsub-system in Markov chains, estimation of transition probability matrix from data, application of Markov chains to particle systems and cellular automata, multiscale SDEs, avergaing and homogenization for multiscale SDEs.

## MATH 6397:22187-Research Directions in Dynamical Systems and Related Fields

Graduate standing and consent of instructor.
Additional Prerequisite Notes:It is strongly encouraged that students have a background in Linear Algebra and Real Analysis. Prior knowledge of Matlab is not required but the course will require writing simple routines in Matlab or an equivalent language.

- A basis theory primer, by C. Heil, 2011
- A wavelet tour of signal processing, by S. Mallat, Third edition, 2009

Text(s):

- (papers and notes)

We live in a data-intensive age which is bringing significant changes in the process of scientific discovery. During the last decade, sparsity has emerged as a leading theme in connection with the goal to produce faster and simpler algorithms for a wide range of signal processing applications. By enabling to accurately approximate data/functions in a certain class using a relatively small number of nonzero coefficients, sparse representations have the power to reveal the essential information we are looking for in the data. Therefore, sparsity implies not only data compression. Understanding the sparsity of a given data type entails a precise knowledge of the modelling and approximation of that data type. This knowledge is essential to design highly efficient algorithms for a tasks such as classification, denoising, interpolation, and segmentation. Multiscale techniques based on wavelets and their generalizations have emerged in the last decade as the most successful approach for sparse signal representations, as testified, for example, by their use in the new FBI fingerprint database and in JPEG2000, the new standard for image compression. Multiscale techniques were also extended beyond the traditional setting of physical spaces allowing for the efficient analysis of general structures, such as manifolds, graphs and point clouds in Euclidean space.

The aim of this course is to provide the mathematical tools to understand multiscale representations starting from the setting of traditional wavelets up to more advanced and emerging constructions such as curvelets, shearlets and diffusion wavelets. Several applications of these ideas will be presented.

## Tentative list of topics:

- Orthonormal bases and frames. A basic problem in mathematics and engineering is to represent a function or a signal as superposition of elementary components. I will introduce the theory of frames and show that it provides the general framework to address this problem. Orthonormal bases are a special example of frames.
- Elements of Fourier analysis: I will briefly review Fourier analysis, including Fourier series and Fourier transforms.
- Wavelet construction and Multiresolution Analysis: The first wavelet basis, the Haar basis, was discovered in 1909 before wavelet theory was born. Unfortunately, the elements of this basis are not continuous. The success of the wavelet theory is due to the ability to construct a variety of wavelet bases with very nice mathematical properties such as smoothness, compact support, vanish moments, etc. Multiresolution analysis is a general method for constructing wavelet bases with prescribed properties.
- Sparse compression and approximation theory: One striking feature of wavelets is their ability to represent function with discontinuities. I will introduce linear and nonlinear approximations and discuss the approximation properties of wavelets and their generalizations (curvelets, shearlets, bandlets).
- Multiscale analysis on high-dimensional data: Multiscale analysis of random walks on graphs and applications to analysis of high-dimensional data sets.
- Modern signal processing: Multiscale methods and wavelets appear today in state-of-the-art signal processing applications, including analysis and diagnostics, quantization and compression, transmission and storage, noise reduction and removal. I will present some applications to data/image analysis. Additional applications will be further explored by the students as individual or group projects.


## MATH 6397:22190 - Data Mining and Machine Learning

Graduate Standing and consent of instructor.

Prerequisites:

## Text(s):

Description:

Additional Prerequisite Notes: Students should have previous familiarity (at the undergraduate level) with random variables and probability distributions

No single textbook.
Reading assignments will be a small set of specific chapters extracted from the following reference texts:
"The Elements of Statistical Learning, Data Mining", Friedman, Hastie,Tibshirani; ISBN: 9780387848570
"Kernel Methods in Computational Biology", B. Schölkopf, K. Tsuda, J.-P. Vert; ISBN:9780262195096
"Introduction to Support Vector Machines", N. Cristianini, J. Shawe-Taylor; ISBN: 978-0521780193

Automatic Learning of unknown functional relationships $Y=F(X)$ between an output $Y$ and highdimensional inputs X , involves algorithms dedicated to the intensive analysis of large "training sets" of N "examples" of inputs/outputs pairs (Xn,Yn ), with $\mathrm{n}=1$ ? N to discover efficient "blackboxes" approximating the unknown function $\mathrm{F}(\mathrm{X})$. Automatic learning was first applied to emulate intelligent tasks involving complex patterns identification, in artificial vision, face recognition, sounds identification, speech understanding, handwriting recognition, texts classification and retrieval, etc. Automatic learning has now been widely extended to the analysis of high dimensional biological data sets in proteomics and genes interactions networks, as well as to smart mining of massive data sets gathered on the Internet.

The course will study major machine learning algorithms derived from Positive Definite Kernels and their associated Self-Reproducing Hilbert spaces. We will study the implementation, performances, and drawbacks of Support Vector Machines classifiers, Kernel based Non Linear Clustering, Kernel based Non Linear Regression, Kernel PCA. We will explore connections between these techniques and Dictionary Learning as well as Artificial Neural Nets with emphasis on key conceptual features such as generalisation capacity. We will present classes of Positive Definite Kernels designed to handle the very long "string descriptions" of proteins involved in genomics and proteomics.

Emphasis will be on understanding key concepts and their mathematical formalization, with a strong focus on algorithmic implementation and testing on actual data sets.

Homework assignments will involve implementation and reports on several applied projects. Students will be assumed to be able to use either Matlab or equivalent scientific softwares. Final exam will involve the in depth reading of one scientific paper and giving a public lecture on the paper.

## << back to top >>

Prerequisites:
Text(s):

## MATH 7350-Geometry of Manifolds

Graduate Standing: MATH 3431 and MATH 3333, or consent of instructor. TBA

Manifolds and tangent bundles, submanifolds and imbeddings, integral manifolds, triangulation of manifolds, connections and holonomy; Riemannian geometry, surface theory, Morse theory, and G-structures.

## << back to top >>

Prerequisites:

Text(s):

Description:

## MATH 7397 - Financial and Energy Time Series Analysis

Graduate Standing and consent of the instructor
1.) An Introduction to Analysis of Financial Data with R, by Ruey S. Tsay, 2012, ISBN: 9780470890813
2.) Multivariate Time Series Analysis: With R and Financial Applications, by Ruey S. Tsay, 2013, Wiley, ISBN: 9781118617908

The course is about time series analysis with special emphasizes onfinancial and erergydata. The course covers ARIMA models, ARCH/GARCH models, seasonal andtrend dataanalysis, high frequency data analysis, parmaters estimation for diffusionprocesses andlevy processes, multiple tiem series, heavy-tailed distributions, andstate space models.Various packages of $R$ are expected to be employed in carrying out thestudy.

